

PII: S0277-5387(96)00600-6

Interaction of xylylisocyanide with Cr^{VI}(Nmesityl)₂(SC₆F₅)₂

Andreas A. Danopoulos,^a Geoffrey Wilkinson, ♣ Tracy K. N. Sweet^b and Michael B. Hursthouse^b*

^a Johnson Matthey Laboratory, Chemistry Department, Imperial College, London SW7 2AY, U.K.

^b Department of Chemistry, University of Wales Cardiff, PO Box 912, Cardiff CF1 3TB, U.K.

(Received 22 November 1996; accepted 4 December 1996)

Abstract—The interaction of 2,6-dimethylphenylisocyanide (xylNC) with $Cr(Nmes)_2(SC_6F_5)_2$ in refluxing toluene gives *mer*- $Cr(SC_6F_5)_3(xylNC)_3$ 1 and minor amounts of *trans*- $Cr(SC_6F_5)_2(xylNC)_4$ 2. Compound 2 is best made by interaction of either $Cr(mes)_2(THF)_3$ or $CrCl_2$ with C_6F_5SH or C_6F_5SNa , respectively, in the presence of xylNC. The X-ray crystal structures of 1 and 2 have been determined. The similar imido thiolates of molybdenum(VI) are inert towards xylNC. \bigcirc 1997 Published by Elsevier Science Ltd

Keywords: chromium ; imido ; thiolate ; isocyanide ; crystal structure.

The reduction of $Cr(Nmes)_2(Smes)_2$, mes = 2,4,6-trimethylphenyl on interaction with xylNC, xyl = 2,6-dimethylphenyl, in refluxing toluene gave the five-coordinate chromium(IV) complex, Cr(Nmes) (Smes)₂(xylNC)₂ together with the carbodiimide, xylN==C==Nmes [1]. Related imido transfer reactions to xylNC from $Cr(Nmes)_2(SC_6F_5)_2$ are now described. Although similar imido thiolates of molybdenum(VI) were made these are unaffected by xylylisocyanide.

RESULTS AND DISCUSSION

The interaction of $Cr(Nmes)_2(SC_6F_5)_2$ [2] with xylylisocyanide in refluxing toluene led to a mixture of the crystalline, paramagnetic complexes, orangebrown *mer*-Cr(SC_6F_5)_3(xylNC)_3 1 and yellow *trans*-Cr(SC_6F_5)_2(xylNC)_4 2. The Cr^{III} complex is the main product and can be separated from 2 by repeated crystallisation from diethylether. The Cr^{II} complex can be separated with difficulty and is more conveniently made in high yield from Cr(mes)_2(THF)_3 or powdered CrCl₂ as in eqs (1) and (2). $Cr(mes)_{2}(THF)_{3} + 2C_{6}F_{5}SH + 4xylNC \xrightarrow{THF} Cr(SC_{6}F_{5})_{2}(xylNC)_{4} + 2mesH \quad (1)$ THF

$$\operatorname{CrCl}_{2(s)} + 2\operatorname{NaSC}_{6}F_{5} + 4xy\operatorname{INC} \longrightarrow$$
$$\operatorname{Cr}(\operatorname{SC}_{6}F_{5})_{2}(xy\operatorname{INC})_{4} + 2\operatorname{NaCl} \quad (2)$$

From the reaction as in eq. (1) a small quantity of material, believed to be $Cr(SC_6F_5)(xylNC)_5$ 3, was isolated.

These new compounds are rare examples of chromium thiolates in oxidation states I–III [3]. It may be noted that the interaction of $Cr(mes)_2(THF)_3$ and $CrCl_2$ with C_6F_5SH or $NaSC_6F_5$ respectively in the absence of xylylisocyanide gives only intractable materials. If 2,4,6- $Pr_3^iC_6H_2SH$ is used transient colours are observed but no identifiable products could be isolated. The structures of 1 and 2 have been determined by X-ray diffraction and are shown in Figs 1 and 2; selected bond lengths and angles are given in Tables 1 and 2. We have not been successful in obtaining good single crystals of 3 but a reasonable image obtained from a rather poor set of data pointed quite clearly to a confirmation of the formulation as the Cr^i species.

The coordination geometry of compound 1 is slightly distorted octahedral, with *cis* and *trans* angles

^{*} Author to whom correspondence should be addressed. Deceased 26 September 1996.

Fig. 1. The structure of $merCr(SC_6F_5)_3(xyINC)_3$.

in the ranges $81.7(2)-95.6(2)^{\circ}$ and $168.98(7)-179.4(2)^{\circ}$ respectively. For each of the two sets of Cr-ligand bonds, Cr—C and Cr—S, one distance is slightly, but significantly, different from the other two; i.e. Cr—C(2) is shorter than Cr—C(1), Cr—C(3), and Cr—S(2) is longer than Cr—S(1), Cr—S(3). However, in neither case is the unique bond the central bond in the *mer* grouping, and there is no obvious explanation for these features. The ligand geometries are as expected, with approximately linear geometry for the Cr—C–N—C isocyanide bonding, and approximately tetrahedral bond angles at the thiol sulfur atoms.

In compound 2 the *trans* molecule lies in a general position in the unit cell. The two Cr—S distances are

similar in length, and longer than those in compound 1 whereas the four Cr—C distances show three equal values [2.002–2.007(4) Å] and one slightly longer [2.032(4) Å]. All, however, are shorter than in 1. We ascribe these features to steric effects between the bulky ligands since the Cr^{II} species is low spin ($\mu_{\text{eff}} = 2.57$ at 20°C), and therefore it is unlikely that electronic effects are involved.

The mechanism of the formation of 1 and 2 by interaction of xylNC with $Cr^{VI}(Nmes)_2(SC_6F_5)_2$ is not clear and the reaction is probably complex since the yields are rather low; attempts to characterise the other intractable products were unsuccessful. It is possible that the initial reaction is similar to that proposed before [1] producing $(mesN)Cr^{IV}(SC_6F_5)_2$

Fig. 2. The structure of trans $Cr(SC_6F_5)_2(xylNC)_4$.

Table 1. Selected bond lengths (Å) and angles ($^{\circ})$ for compound 1

Cr—C(1)	2.067(6)	CrC(2)	2.041(6)
Cr—C(3)	2.055(6)	Cr-S(1)	2.370(2)
Cr—S(2)	2.391(1)	Cr—S(3)	2.366(2)
S(1)—C(101)	1.751(5)	S(2)C(201)	1.766(5)
S(3)-C(301)	1.731(6)	N(1) - C(1)	1.154(6)
N(1)-C(11)	1.433(6)	N(2)—C(2)	1.161(6)
N(2)C(21)	1.424(6)	N(3) - C(3)	1.160(6)
N(3)—C(31)	1.430(6)		
C(2)CrC(1)	179.3(2)	C(3)—Cr—C(1)	87.4(2)
C(1) - Cr - S(3)	92.2(2)	C(1)— Cr — $S(1)$	84.1(2)
C(1)— Cr — $S(2)$	89.8(2)	C(2)— Cr — $S(3)$	87.6(2)
C(2)— Cr — $C(3)$	93.0(2)	C(2)— Cr — $S(1)$	95.2(2)
C(2)— Cr — $S(2)$	90.9(2)	C(3)— Cr — $S(3)$	174.1(2)
C(3)— Cr — $S(1)$	88.8(2)	C(3)—Cr—S(2)	81.7(2)
S(3) - Cr - S(1)	97.00(8)	S(3) - Cr - S(2)	92.39(8)
S(1)—Cr—S(2)	168.99(7)	C(101)—S(1)—Cr	109.3(2)
C(201)S(2)-Cr	107.6(2)	C(301)—S(3)—Cr	110.9(2)
C(1) - N(1) - C(11)	177.1(6)	C(2) - N(2) - C(21)	173.7(6)
C(3)-N(3)-C(31)	170.6(6)	N(1)— $C(1)$ — Cr	178.9(6)
N(2) - C(2) - Cr	171.6(5)	N(3) - C(3) - Cr	172.3(5)

Cr—C(2)	2.002(4)	CrC(3)	2.002(4)
CrC(4)	2.007(4)	CrC(1)	2.032(4)
Cr-S(1)	2.4187(13)	Cr—S(2)	2.4225(14)
S(1)C(100)	1.763(4)	S(2)C(200)	1.769(4)
N(1) - C(1)	1.156(4)	N(1) - C(11)	1.409(5)
N(2)—C(2)	1.161(5)	N(2)—C(21)	1.413(5)
N(3)—C(3)	1.162(4)	N(3)C(31)	1.406(5)
N(4)—C(4)	1.160(5)	N(4)C(41)	1.420(5)
C(2)CrC(3)	90.5(2)	C(2)CrC(4)	179.7(2)
C(3)— Cr — $C(4)$	89.2(2)	C(2)— Cr — $C(1)$	91.1(2)
C(3)— Cr — $C(1)$	178.2(2)	C(4)— Cr — $C(1)$	89.1(2)
C(2)— Cr — $S(1)$	86.25(11)	C(3) - Cr - S(1)	87.64(10)
C(4)— Cr — $S(1)$	93.92(11)	C(1) - Cr - S(1)	93.05(11)
C(2)—Cr—S(2)	91.75(12)	C(3)— Cr — $S(2)$	87.98(10)
C(4)—Cr—S(2)	88.06(12)	C(1)— Cr — $S(2)$	91.39(11)
S(1)— Cr — $S(2)$	175.17(5)	C(100) - S(1) - Cr	105.71(12)
C(200)—S(2)—Cr	107.75(12)	C(1) - N(1) - C(11)	177.4(4)
C(2) - N(2) - C(21)	169.3(4)	C(3) - N(3) - C(31)	176.2(4)
C(4) - N(4) - C(41)	162.0(4)	N(1)-C(1)-Cr	177.0(4)
N(2)—C(2)—Cr	173.9(3)	N(3)C(3)Cr	179.0(4)
N(4)—C(4)—Cr	174.3(4)		

Table 2. Selected bond lengths (Å) and angles (°) for compound 2

 $(xylNC)_2$ but proceeds further by a second mesN transfer, as in eq. (3):

$$\operatorname{Cr}^{v_1}(\operatorname{Nmes})_2(\operatorname{SC}_6F_5)_2 \xrightarrow{xy|\operatorname{NC}} 2\operatorname{Mes}\operatorname{N==}C=\operatorname{Nxyl} + \operatorname{``Cr}^{II}(\operatorname{SC}_6F_5)_2$$
'' (3)

While this would account for presence of the Cr^{II} species and the formation of the carbodiimide (characterised by GC/MS) it is not clear how the Cr^{III} species is formed. Oxidation of the Cr^{II} species by the Cr^{VI} complex with transfer of an SC_6F_5 group is possible but radical reactions could also be involved as could a comproportionation reaction in the presence of xyINC:

$$2^{\text{``Cr^{II}}}(SC_6F_5)_2^{\text{''}} \xrightarrow{xyINC} Cr(SC_6F_5)_3(xyINC)_3 + Cr(SC_6F_5)(xyINC)_5$$

The Cr^{I} complex was detected only in the reactions starting with Cr^{VI} species, however.

Attempts to prepare the molybdenum(VI) compounds $(Ar^*N)_2Mo(SAr)_2$, $Ar^* = mes$, 2,6- $Pr_2^iC_6H_2$; Ar = mes, C_6F_5 , 2,4,6- $Pr_3^iC_6H_2$ were made, but crystalline products were obtained only for Mo(NAr*)_2 $(S2,4,6-Pr_3^iC_6H_2)_2Ar^* = mes$, 4, 2,6- $Pr_2^iC_6H_3$, 5, from the interaction of $(Ar^*N)_2MoCl_2(dme)$ with NaSAr. The other reactions gave intractable mixtures even when TISAr was used as the thiolate source.

However, neither 4 nor 5 reacted with xylNC even after refluxing in toluene for 7 days; this inertness may be due to the bulky ligands preventing initial coordination of xylylisocyanide.

EXPERIMENTAL

Analyses were by the Imperial College microanalytical laboratory. All operations were carried out under purified Ar or N_2 , or in a Vacuum Atmospheres glove box. All solvents were degassed and distilled before use. The petroleum used throughout had a boiling point 40–60°C.

NMR data were obtained using a JEOL EX-270 or Bruker Avance DRX-300 spectrometer operating at 270 or 300 MHz (¹H), respectively, and referenced to the residual proton impurity in the solvent (δ 7.15 C₆D₆). Mass spectra were obtained on a VG Autospec spectrometer. Magnetic susceptibility measurements in the solid state at room temperature were carried out on an Evans' balance (Sherwood Scientific, Cambridge, U.K.).

The starting materials were prepared according to literature procedures: $Cr(Nmes)_2(SC_6F_5)_2$ [1], $Cr(mes_2)(THF)_3$ [4], $Mo(Nmes)_2Cl_2(dme)$ [5], $Mo(N-2,6-Pr_2^iC_6H_3)_2Cl_2(dme)$ [5].

Sodium arylthiolates were prepared by interaction of sodium with arylthiol in ether. All commercial chemicals were Aldrich, Avocado or Fluka.

Tris(pentafluorothiophenolato)tris(2,6-dimethylphenylisocyanide)chromium(III) 1

A mixture of $Cr(Nmes)_2(SC_6F_5)_2(0.7 \text{ g}, ca \text{ I mmol})$ and 2,6-xylylisocyanide (0.67 g, 5 mmol) in toluene (50 cm³) was refluxed for 3 h. After removal of volatiles under reduced pressure, washing the residue with petroleum (3 × 10 cm³), extraction with Et₂O $(2 \times 100 \text{ cm}^3)$, filtering, concentration of the filtrates and cooling (-20°C) for 12 h gave orange crystals. Yield 0.36 g ca 35%. Found (calc.): C, 52.8 (51.8), H, 2.9 (2.6), N 4.3 (4.0)%. IR (Nujol mull) cm⁻¹. 2358, 2330, 2183. The ether insoluble residue was extracted with toluene (ca 10 cm³) filtered, and concentrated to ca 2 cm³. After cooling (-20°C) yellow crystals of *trans*-Cr(SC₆F₅)₂(xylNC)₄ were obtained. Yield: 0.08 g, (ca 8%).

Bis(pentafluorothiophenolato)tetrakis(2,6-dimethylphenylisocyanide)chromium(II) 2

(i) From Crmes₂(THF)₃. To a solution of Crmes₂ (THF)₃ in THF (0.7 g, 0.39 mmol, in 70 cm³) at -78° C was added a solution of C₆F₃SH in THF (0.56 g, 2.8 mmol in 20 cm³). The green reaction mixture was stirred at -60° C for 2 h; on addition of xylylisocyanide (1.1 g, 8.4 mmol) the solution became brown and then orange. Removal of volatiles under reduced pressure, washing of the residue with a small quantity of petroleum, extraction into toluene (30 cm³), filtration, concentration and cooling of the extracts (-20° C) gave yellow crystals. Yield: 1.0 g, 75%, m.p. *ca* 183°C. From the petroleum washings after concentration and cooling, yellow crystals were obtained in low yield.

(ii) From $CrCl_2$. To a suspension of $CrCl_2$ in THF (0.25 g, 2.0 mmol in 50 cm³) at $-78^{\circ}C$ was added a solution of $NaSC_6F_5$ (0.9 g, 4.0 mmol) in THF. To the green-blue reaction mixture at room temperature

was added xylylisocyanide (1.58 g, 12 mmol). The orange-brown reaction mixture was worked-up as above giving yellow crystals identical with those from method (i). Yield: 1.27 g, 65%, m.p. *ca* 185°C. Found (calc.): C 59.0 (59.2), H 3.7 (3.7), N 5.5 (5.7)%. IR (Nujol mull), cm⁻¹: 2086 (C=N).

B is (m e sitylimido) b is (2,4,6-triisopropylphenylthiolato)molybdenum(VI) 4

To a solution of Mo(Nmes)₂Cl₂dme in Et₂O (0.55 g, 1 mmol in 30 cm³) at -78° C was added a suspension of Na(SC₆H₂-Prⁱ₃) in Et₂O (0.54 g, 2.1 mmol in 30 cm³). After warming to room temperature the reaction mixture was stirred for 12 h. Evaporation of volatiles under reduced pressure afforded an orange-red oil which, after extraction in hexamethyldisiloxane, concentration and cooling (-20° C) gave orange crystals. Yield: 0.54 g, 65%, m.p. 142–145°C. M.S. (E.I.): m/z, 834 (M⁺), 599 (M⁺-SC₆H₂Prⁱ₃). NMR (C₆D₆). ¹H: δ 7.1 (s, 4H, SC₆H₂Prⁱ₃), 6.6 (s, 4H, NC₆H₂Me₃), 4.3 [sept., 4H, SC₆H₂(o-Prⁱ₂)Prⁱ₃], 2.2 [s, 12H, NC₆H₂(o-Me)₂Me], 2.0 [s, 6H, NC₆H₂(p-Me)Me₂], 1.3 [d, 24H, SC₆H₂(o-Prⁱ₂)Prⁱ], 1.2 [d, 12H, SC₆H₂(p-Prⁱ)Prⁱ₂].

Bis(2,6-diisopropylphenylimido)bis(2,4,6-triisopropylphenylthiolato)molybdenum(VI) 5

This was obtained following a method similar to that described for 3 from $Mo(NC_6H_2Pr_2^i)_2Cl_2dme$ and

Compound	1	2	
Formula	$C_{45}H_{27}CrF_{15}N_3S_3$	$C_{48}H_{36}CrF_{10}N_4S_2$	
M _r	1042.88	974.93	
Temperature (K)	150	293	
Crystal system	$P2_1/n$	PĪ	
Space group	Monoclinic	Triclinic	
a (Å)	11.128(10)	7.643(2)	
b (Å)	21.512(9)	14.139(6)	
c (Å)	18.631(8)	20.726(4)	
α(*)		83.20(2)	
β(°)	98.27(4)	89.190(10)	
$\gamma(2)$		81.22(3)	
$V(Å^3)$	4414(5)	2197.9(12)	
Ζ	4	2	
$D_{\rm c} ({\rm Mg}{\rm m}^{-3})$	1.569	1.473	
F(000)	2100	996	
Crystal dimensions (mm)	$0.15 \times 0.12 \times 0.09$	$0.42 \times 0.12 \times 0.03$	
$\mu/(\mathrm{Mo-}K_a) \ (\mathrm{mm}^{-1})$	0.502	0.438	
Collected reflections	16710	7368	
Independent reflections (R_{int})	6618(0.0938)	5681(0.0464)	
Correction factors	1.087, 0.873		
Data, restraints, parameters	6617, 0, 610	5680, 0, 642	
Goodness of fit, F^2	0.485	0.874	
$R1, wR2 [I > 2\sigma(I)]$	0.0389, 0.0601	0.0427, 0.0932	
R1, wR2 (all data)	0.1612, 0.0757	0.0667, 0.0994	
Largest difference peak and hole $(e^{A^{-3}})$	0.264, -0.230	0.355, -0.266	

Table 3. Crystal data and structure refinement details for compounds 1-2

Na(SC₆H₂-Prⁱ₃) in Et₂O as orange crystals from petroleum. Yield: *ca* 75%, m.p. 217°C. Found (calc.): C 70.3 (70.7), H 8.8 (8.7), N 2.9 (3.0)%. M.S. (E.I.): m/z 918 (M⁺), 682 (M⁺-SC₆H₂Prⁱ₃). NMR (C₆D₆), ¹H: δ 7.2 (s, 4H, SC₆H₂Prⁱ₃), 6.9 (s, 6H NC₆H₃Prⁱ₂), 4.3 [sept., 4H, SC₆H₂(*o*-Prⁱ₂)Prⁱ], 3.6 (sept., 4H, NC₆H₃ Prⁱ₂), 2.8 [sept., 2H, SC₆H₂(*p*-Prⁱ)Prⁱ₂], 1.5 [d, 24H, NC₆H₃Prⁱ₂], 1.3 [d, 12H, SC₆H₂(*p*-Prⁱ)Prⁱ₂], 1.2 [d, 24H, SC₆H₂(*o*-Prⁱ₂)Prⁱ].

X-ray crystallography

X-ray data for compounds 1 and 2 were collected at low temperature using a FAST TV area detector diffractometer with Mo- K_{α} radiation ($\lambda = 0.71069$ Å), as previously described [6]. The structures were solved via direct methods procedures of SHELXS 86 [7] and refined by full-matrix least-squares on F_o^2 using the program SHELXL 93 [8]. All unique data used were corrected for Lorentz polarisation factors and for absorption using the program DIFABS [9]. The nonhydrogen atoms were refined with anisotropic thermal parameters and the hydrogen atoms were included in idealised positions. Crystal data and refinement details are summarized in Table 3.

Additional material available from the Cambridge Crystallographic Data comprises fractional atomic co-ordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements—We thank the EPSRC for partial support (A.A.D.) and for provision of X-ray facilities.

REFERENCES

- Danopoulos, A. A., Wilkinson, G., Sweet, T. K. N. and Hursthouse, M. B., *Polyhedron* 1996, 15, 873.
- Danopoulos, A. A., Wilkinson, G., Sweet, T. K. N. and Hursthouse, M. B., J. Chem. Soc., Dalton Trans. 1995, 2111.
- (a) Larkworthy, L. F., Noland, K. B. and O'Brien, P. in Comprehensive Coordination Chemistry (Edited by G. Wilkinson, R. D. Gillard and J. A. McCleverty), p. 876. Pergamon, Oxford (1987); (b) Eremenko, I. L., Berke, H., Kolobkov, B. and Novotortsev, V. M., Organometallics 1994, 13, 244 and references cited therein; (c) Goh, L. C., Tay, M. S., Mak, T. G. W. and Wang, R.-J., Organometallics 1992, 11, 1711; (d) Springs, J., Janzen, C. P., Darensbourg, M. Y., Calabrese, J. C., Konsic, P. J., Verpeaux, J.-N. and Amatore, C., J. Am. Chem. Soc. 1990, 112, 5787.
- 4. Stolze G. and Hüble, J., J. Organomet. Chem. 1967, 7, 301.
- 5. Fox, H. H., Yap, K. B., Robbins, J., Cai, S. and Schrock, R. R., *Inorg. Chem.* 1992, **31**, 2287.
- Danopoulos, A. S., Wilkinson, G., Hussain-Bates, B. and Hursthouse, M. B., J. Chem. Soc., Dalton Trans. 1991, 1855.
- 7. Sheldrick, G. M., SHELX 86, Acta Cryst. Sect. A 1990, 46, 467.
- Sheldrick, G. M., SHELX 93, Program for Crystal Structure Refinement. University of Göttingen, Germany (1993).
- Walker, N. P. C. and Stuart, D., Acta Cryst. Sect. A 1983, 39, 158 (adapted for FAST geometry by A. Karaulov, University of Wales, Cardiff (1991).